Conditional density estimation
rdq.condf.Rd
rdq.condf
estimates conditional density functions by using the differencing method.
Arguments
- x
a vector (or a matrix) of covariates.
- Q
a vector of estimated conditional quantiles.
- bcoe
quantile regression coefficient estimates.
- taus
a vector of quantiles of interest.
- taul
a vector of quantiles used for the conditional density estimation. It is needed to estimate the tail parts of conditional density functions more precisely.
- delta
bandwidths for estimating the conditional density.
- cov
either 0 or 1. Set
cov=1
if covariates are present in the model; otherwise setcov=0
.
Examples
n = 500
x = runif(n,min=-4,max=4)
d = (x > 0)
y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n)
tlevel = seq(0.1,0.9,by=0.1)
hh = rep(2,length(tlevel))
ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,h.tau=hh,cov=0)
delta = 0.186
fe = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=0.5,taul=tlevel,delta=delta,cov=0)