Estimate the QTE under the RDD
rdq.Rd
rdq
estimates QTE under the RDD with or without covariates. This function is used by rd.qte
to generate QTE estimates.
Arguments
- y
a numeric vector, the outcome variable.
- x
a vector (or a matrix) of covariates, the first column is the running variable.
- d
a numeric vector, the treatment status.
- x0
the cutoff point.
- z0
the value of the covariates at which to evaluate the effects. For example, if a female dummy is included, z0 = 1 may indicate the female subgroup.
- tau
a vector of quantiles of interest.
- h.tau
the bandwidth values (specified for each quantile level).
- cov
either 0 or 1. Set
cov=1
if covariates are present in the model; otherwise setcov=0
.
Value
A list with elements:
- qte
QTE estimates.
- qp.est
conditional quantile estimates on the right side of \(x_{0}\) (or for the D=1 group).
- qm.est
conditional quantile estimates on the left side of \(x_{0}\) (or for the D=0 group).
- bcoe.p
quantile regression coefficients on the right side of \(x_{0}\).
- bcoe.m
quantile regression coefficients on the left side of \(x_{0}\).
Examples
# Without covariate
n = 500
x = runif(n,min=-4,max=4)
d = (x > 0)
y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n)
tlevel = seq(0.1,0.9,by=0.1)
hh = rep(2,length(tlevel))
rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,h.tau=hh,cov=0)
#> $qte
#> [,1]
#> [1,] 1.153096
#> [2,] 1.526869
#> [3,] 1.301352
#> [4,] 1.435172
#> [5,] 1.115538
#> [6,] 1.331745
#> [7,] 1.527188
#> [8,] 1.804409
#> [9,] 1.818972
#>
#> $qp.est
#> [,1]
#> [1,] -0.01934923
#> [2,] 0.68049757
#> [3,] 0.79369693
#> [4,] 1.11818522
#> [5,] 1.27177962
#> [6,] 1.77692947
#> [7,] 2.12921009
#> [8,] 2.54873208
#> [9,] 2.90461042
#>
#> $qm.est
#> [,1]
#> [1,] -1.1724450
#> [2,] -0.8463718
#> [3,] -0.5076549
#> [4,] -0.3169866
#> [5,] 0.1562418
#> [6,] 0.4451841
#> [7,] 0.6020221
#> [8,] 0.7443226
#> [9,] 1.0856382
#>
#> $bcoe.p
#> [,1]
#> [1,] -0.01934923
#> [2,] 0.68049757
#> [3,] 0.79369693
#> [4,] 1.11818522
#> [5,] 1.27177962
#> [6,] 1.77692947
#> [7,] 2.12921009
#> [8,] 2.54873208
#> [9,] 2.90461042
#>
#> $bcoe.m
#> [,1]
#> [1,] -1.1724450
#> [2,] -0.8463718
#> [3,] -0.5076549
#> [4,] -0.3169866
#> [5,] 0.1562418
#> [6,] 0.4451841
#> [7,] 0.6020221
#> [8,] 0.7443226
#> [9,] 1.0856382
#>
# (continued) With covariates
z = sample(c(0,1),n,replace=TRUE)
y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n)
rdq(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,h.tau=hh,cov=1)
#> $qte
#> [,1] [,2]
#> [1,] 1.880338 1.667822
#> [2,] 2.182650 2.152383
#> [3,] 2.039426 2.112467
#> [4,] 2.493032 2.572881
#> [5,] 2.269768 2.890846
#> [6,] 1.988534 3.865975
#> [7,] 1.694334 3.348729
#> [8,] 1.815160 3.421151
#> [9,] 1.719225 3.104595
#>
#> $qp.est
#> [,1] [,2]
#> [1,] 0.5493202 0.8373678
#> [2,] 0.7977957 1.4799801
#> [3,] 0.9147745 1.5450815
#> [4,] 1.6715846 2.3052193
#> [5,] 1.6963787 2.5927565
#> [6,] 1.9444055 3.6764985
#> [7,] 2.0066870 3.7075433
#> [8,] 2.2761333 3.9771163
#> [9,] 2.7464395 4.0287264
#>
#> $qm.est
#> [,1] [,2]
#> [1,] -1.33101747 -0.8304538
#> [2,] -1.38485479 -0.6724029
#> [3,] -1.12465189 -0.5673859
#> [4,] -0.82144693 -0.2676613
#> [5,] -0.57338926 -0.2980893
#> [6,] -0.04412885 -0.1894764
#> [7,] 0.31235283 0.3588141
#> [8,] 0.46097339 0.5559651
#> [9,] 1.02721460 0.9241309
#>
#> $bcoe.p
#> [,1] [,2]
#> [1,] 0.5493202 0.2880477
#> [2,] 0.7977957 0.6821844
#> [3,] 0.9147745 0.6303070
#> [4,] 1.6715846 0.6336347
#> [5,] 1.6963787 0.8963778
#> [6,] 1.9444055 1.7320930
#> [7,] 2.0066870 1.7008563
#> [8,] 2.2761333 1.7009830
#> [9,] 2.7464395 1.2822869
#>
#> $bcoe.m
#> [,1] [,2]
#> [1,] -1.33101747 0.50056365
#> [2,] -1.38485479 0.71245193
#> [3,] -1.12465189 0.55726602
#> [4,] -0.82144693 0.55378566
#> [5,] -0.57338926 0.27529994
#> [6,] -0.04412885 -0.14534758
#> [7,] 0.31235283 0.04646130
#> [8,] 0.46097339 0.09499174
#> [9,] 1.02721460 -0.10308365
#>